COVID-19 Measures

All CIISB Core facilities are fully functional. Visits of external foreign users are regulated by the Measures concerning foreigners and border crossing of the Czech Government. Please, check the current status on the web and contact the staff for details.

CIISB offers priority access to groups that need to use CIISB structural biology services for projects directly related to studies of the virus and projects aiming to develop an effective vaccine or treatment. To request priority access, please submit a research proposal with „COVID-19“ in the title of the proposal, through the online application system HERE. Successfully accepted proposals will be free of charge, and no financial contribution will be requested for the measurement/service.

Czech National Centre of the European Research Infrastructure Consortium INSTRUCT ERIC

A gateway to realm of structural data for biochemists, biophysicists, molecular biologist, and all scientists whose research benefits from accurate structure determination of biological macromolecules, assemblies, and complex molecular machineries at atomic resolution.

Open access to 10 high-end core facilities and assisted expertise in NMR, X-ray crystallography and crystallization, cryo-electron microscopy and tomography, biophysical characterization of biomolecular interaction, nanobiotechnology, proteomics and structural mass spectrometry.

A distributed infrastructure constituted by Core Facilities of CEITEC (Central European Institute of Technology), located in Brno, and BIOCEV (Biotechnology and Biomedicine Centre), located in Vestec near Prague, Central Bohemia.


News archive

Highlights of Coronavirus Structural Studies

Coronavirus Archive


No upcoming events available yet.

Event calendar

Research Highlights

the best of science obtained using CIISB Core Facilities

Nature Communications 2020

Nature Index Journal

Structure of the RcGTA particle and organization of segments of the R. capsulatus genome encoding protein components of RcGTA particles. a Cryo-EM reconstruction of a native particle of RcGTA from R. capsulatus strain DE442 calculated from 42,242 particle images. The left part of the panel shows the complete particle, whereas on the right the front half of the particle has been removed to show DNA and internal proteins. Individual proteins in the density map are colored according to the gene map in panel b. Yellow mesh highlights the structural organization of capsid proteins within the RcGTA head. The inset shows an example of a two-dimensional class average and an electron micrograph of an RcGTA particle. The scale bar within the inset represents 20 nm. b Gene map of three genome segments encoding fourteen structural proteins of RcGTA particles. c Cryo-EM reconstruction of an RcGTA particle from R. capsulatus strain DE442 with T = 3 quasi-icosahedral head. The reconstruction is based on 1076 particle images. The structure is at the scale of those shown in panel a. The inset shows an example of a two-dimensional class average and an electron micrograph of RcGTA particle with an icosahedral head. Scale bar represents 20 nm. d Organization of capsomers in the oblate capsid of RcGTA. Capsomers forming one fifth of the capsid are highlighted in different colors and marked with P for pentamer and H for hexamer.

Pavel Plevka Research Group


Alphaproteobacteria, which are the most abundant microorganisms of temperate oceans, produce phage-like particles called gene transfer agents (GTAs) that mediate lateral gene exchange. However, the mechanism by which GTAs deliver DNA into cells is unknown. Here we present the structure of the GTA of Rhodobacter capsulatus (RcGTA) and describe the conformational changes required for its DNA ejection. The structure of RcGTA resembles that of a tailed phage, but it has an oblate head shortened in the direction of the tail axis, which limits its packaging capacity to less than 4,500 base pairs of linear double-stranded DNA. The tail channel of RcGTA contains a trimer of proteins that possess features of both tape measure proteins of long-tailed phages from the family Siphoviridae and tail needle proteins of short-tailed phages from the family Podoviridae. The opening of a constriction within the RcGTA baseplate enables the ejection of DNA into bacterial periplasm.

Bárdy,P., Füzik, T., Hrebík, D., Pantůček, R., Beatty, T.J. and Plevka, P: Structure and mechanism of DNA delivery of a gene transfer agent, Nat. Commun. (2020) 11,


Int. J. Biol. Macromol. 2020

Crystal structure of BP39L and CV39L. (A) Crystal structure of BP39L shown in secondary structure representation (β-strands in yellow and loops in green) (B) Surface representation (yellow) of BP39L color-coded according to putative binding sites (blue). (C) Crystal structure of CV39L shown in secondary structure representation (β-strands in violet, α-helices in cyan and loops in pink). (D) Surface representation (violet) of CV39L color-coded according to putative binding sites (blue), α-helices shown in cyan.

Michaela Wimmerova Research Group


Burkholderia pseudomallei and Chromobacterium violaceum are bacteria of tropical and subtropical soil and water that occasionally cause fatal infections in humans and animals. Microbial lectins mediate the adhesion of organisms to host cells, which is the first phase in the development of infection. Here we report the discovery of two novel lectins from the above-mentioned bacteria – BP39L and CV39L. The crystal structures revealed that the lectins possess a seven-bladed β-propeller fold. Functional studies conducted on a series of oligo- and polysaccharides confirmed the preference of BP39L for mannosylated saccharides and CV39L for rather more complex polysaccharides with a monosaccharide preference for β-l-fucose. The presented data indicate that the proteins belong to a currently unknown family of lectins.

Sykorova, P.,  Novotna, J. Demo, G., Pompidor, G., Dubska, E., Komarek, J., Fujdiarova, E., Houser, J., Haronikova, L., Varrot, A., Shilova, N., Imberty, A., Bovin, N., Pokorna, M., and Wimmerova, M.: Characterization of novel lectins from Burkholderia pseudomallei and Chromobacterium violaceum with seven-bladed beta-propeller fold, Int. J. Biol. Macromol.  2019, 152, 1113-1124,

More publications Research Highlights archive

Reader’s Corner

literature to read, science to follow

In this section, a distinct selection of six highly stimulating research publications and reviews published during past 6 months is presented. It is our hope that links to exciting science, which deserves attention of the structural biology community, will help you to locate gems in the steadily expanding jungle of scientific literature. You are welcome to point out to any paper you found interesting by sending a link or citation to The section is being updated regularly.


Reader’s Corner Archive

Quote of July

“Physics is like sex: sure, it may give some practical results, but that's not why we do it.”

Richard P. Feynman