COVID-19 Measures

All CIISB Core facilities are fully functional. Visits of external foreign users are regulated by the Measures concerning foreigners and border crossing of the Czech Government. Please, check the current status on the web and contact the staff for details.

CIISB offers priority access to groups that need to use CIISB structural biology services for projects directly related to studies of the virus and projects aiming to develop an effective vaccine or treatment. To request priority access, please submit a research proposal with „COVID-19“ in the title of the proposal, through the online application system HERE. Successfully accepted proposals will be free of charge, and no financial contribution will be requested for the measurement/service.

Czech National Centre of the European Research Infrastructure Consortium INSTRUCT ERIC

CIISB video presentation

A gateway to realm of structural data for biochemists, biophysicists, molecular biologist, and all scientists whose research benefits from accurate structure determination of biological macromolecules, assemblies, and complex molecular machineries at atomic resolution.

Open access to 10 high-end core facilities and assisted expertise in NMR, X-ray crystallography and crystallization, cryo-electron microscopy and tomography, biophysical characterization of biomolecular interaction, nanobiotechnology, proteomics and structural mass spectrometry.

A distributed infrastructure constituted by Core Facilities of CEITEC (Central European Institute of Technology), located in Brno, and BIOCEV (Biotechnology and Biomedicine Centre), located in Vestec near Prague, Central Bohemia.

Highlights of Coronavirus Structural Studies

Coronavirus Archive

Research Highlights

the best of science obtained using CIISB Core Facilities

Nature Communications 2020

Nature Index Journal

Schematic illustration of the TRAK1-mediated anchoring of KIF5B. a Top: in absence of TRAK1, KIF5B (green) can either continue its walk by rebinding the disengaged motor domain to the microtubule or dissociate from the microtubule when the engaged motor domain unbinds from the microtubule. Bottom: in presence of microtubule-bound TRAK1 (magenta), when both motor domains of KIF5B disengage from the microtubule, KIF5B remains tethered to the microtubule through a diffusive interaction of TRAK1 with the microtubule and thereby enables the rebinding of a motor domain of KIF5B to the microtubule. In this state, TRAK1 might facilitate navigation around obstacles by diffusion along the microtubule surface. b Overview of the functions of TRAK1. Top: TRAK1 activates auto-inhibited KIF5B, enabling its processive movement along microtubules. Middle: TRAK1 increases the processivity of KIF5B in crowded environments. Bottom: TRAK1 enables KIF5B-based transport of isolated mitochondria along microtubules in vitro.

Zdeněk Lánský Research Group


Intracellular trafficking of organelles, driven by kinesin-1 stepping along microtubules, underpins essential cellular processes. In absence of other proteins on the microtubule surface, kinesin-1 performs micron-long runs. Under crowding conditions, however, kinesin-1 motility is drastically impeded. It is thus unclear how kinesin-1 acts as an efficient transporter in intracellular environments. Here, we demonstrate that TRAK1 (Milton), an adaptor protein essential for mitochondrial trafficking, activates kinesin-1 and increases robustness of kinesin- 1 stepping on crowded microtubule surfaces. Interaction with TRAK1 i) facilitates kinesin-1 navigation around obstacles, ii) increases the probability of kinesin-1 passing through cohesive islands of tau and iii) increases the run length of kinesin-1 in cell lysate. We explain the enhanced motility by the observed direct interaction of TRAK1 with microtubules, pro- viding an additional anchor for the kinesin-1-TRAK1 complex. Furthermore, TRAK1 enables mitochondrial transport in vitro. We propose adaptor-mediated tethering as a mechanism regulating kinesin-1 motility in various cellular environments.

Henrichs, V.,  Grycova, L.,  Bařinka, C., Nahačka, Z., Neužil, J., Diez, S., Rohlena, J., Braun, M., and Lánský, Z.:Mitochondria-adaptor TRAK1 promotes kinesin-1 driven transport in crowded environments, Nat. Commun. (2020) 11, 3123,

Nature Communications 2020

Nature Index Journal

Sinefungin recognition by the nsp16 MTase. A) SARS CoV-2 nsp10-nsp16 protein complex bound to sinefungin (white sticks), nsp16 in surface representation (cyan), nsp10 in cartoon representation (orange) and zinc ions as gray spheres. B) Detailed view of sinefungin recognition, important amino acid residues are shown in stick representation, water as red spheres and hydrogen bonds are shown as dashed lines.

Evžen Bouřa and Radim Nencka Research Groups


COVID-19 pandemic is caused by the SARS-CoV-2 virus that has several enzymes that could be targeted by antivirals including a 2'-O RNA methyltransferase (MTase) that is involved in the viral RNA cap formation; an essential process for RNA stability. This MTase is composed of two nonstructural proteins, the nsp16 catalytic subunit and the activating nsp10 protein. We have solved the crystal structure of the nsp10-nsp16 complex bound to the pan-MTase inhibitor sinefungin in the active site. Based on the structural data we built a model of the MTase in complex with RNA that illustrates the catalytic reaction. A structural comparison to the Zika MTase revealed low conservation of the catalytic site between these two RNA viruses suggesting preparation of inhibitors targeting both these viruses will be very difficult. Together, our data will provide the information needed for structure-based drug design.

Krafčíková, P., Šilhan, J., Nencka, R., and Bouřa, E.: Structural analysis of the SARS-CoV-2 methyltransferase complex involved in coronaviral RNA cap creation, Nat. Commun. (2020) 11, 3717,

More publications Research Highlights archive

Reader’s Corner

literature to read, science to follow

In this section, a distinct selection of six highly stimulating research publications and reviews published during past 6 months is presented. It is our hope that links to exciting science, which deserves attention of the structural biology community, will help you to locate gems in the steadily expanding jungle of scientific literature. You are welcome to point out to any paper you found interesting by sending a link or citation to The section is being updated regularly.


Reader’s Corner Archive

Quote of September

“Extraordinary claims require extraordinary evidence.”

Carl Sagan