COVID-19 Measures

All CIISB Core facilities are fully functional. Visits of external foreign users are regulated by the Measures concerning foreigners and border crossing of the Czech Government. Please, check the current status on the web and contact the staff for details.

CIISB offers priority access to groups that need to use CIISB structural biology services for projects directly related to studies of the virus and projects aiming to develop an effective vaccine or treatment. To request priority access, please submit a research proposal with „COVID-19“ in the title of the proposal, through the online application system HERE. Successfully accepted proposals will be free of charge, and no financial contribution will be requested for the measurement/service.

Czech National Centre of the European Research Infrastructure Consortium INSTRUCT ERIC

CIISB video presentation

A gateway to realm of structural data for biochemists, biophysicists, molecular biologist, and all scientists whose research benefits from accurate structure determination of biological macromolecules, assemblies, and complex molecular machineries at atomic resolution.

Open access to 10 high-end core facilities and assisted expertise in NMR, X-ray crystallography and crystallization, cryo-electron microscopy and tomography, biophysical characterization of biomolecular interaction, nanobiotechnology, proteomics and structural mass spectrometry.

A distributed infrastructure constituted by Core Facilities of CEITEC (Central European Institute of Technology), located in Brno, and BIOCEV (Biotechnology and Biomedicine Centre), located in Vestec near Prague, Central Bohemia.


News archive

Highlights of Coronavirus Structural Studies

13 Jan

Papain-like protease regulates SARS-CoV-2 viral spread and innate immunity (Nature)

The papain-like protease PLpro is an essential coronavirus enzyme that is required for processing viral polyproteins to generate a functional replicase complex and enable viral spread. PLpro is also implicated in cleaving proteinaceous post-translational modifications on host proteins as an evasion mechanism against host antiviral immune responses. Here I. Dikic et. al.  perform biochemical, structural and functional characterization of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) PLpro (SCoV2-PLpro) and outline differences with SARS-CoV PLpro (SCoV-PLpro) in regulation of host interferon and NF-κB pathways. SCoV2-PLpro and SCoV-PLpro share 83% sequence identity but exhibit different host substrate preferences; SCoV2-PLpro preferentially cleaves the ubiquitin-like interferon-stimulated gene 15 protein (ISG15), whereas SCoV-PLpro predominantly targets ubiquitin chains. The crystal structure of SCoV2-PLpro in complex with ISG15 reveals distinctive interactions with the amino-terminal ubiquitin-like domain of ISG15, highlighting the high affinity and specificity of these interactions. Furthermore, upon infection, SCoV2-PLpro contributes to the cleavage of ISG15 from interferon responsive factor 3 (IRF3) and attenuates type I interferon responses. Notably, inhibition of SCoV2-PLpro with GRL-0617 impairs the virus-induced cytopathogenic effect, maintains the antiviral interferon pathway and reduces viral replication in infected cells. These results highlight a potential dual therapeutic strategy in which targeting of SCoV2-PLpro can suppress SARS-CoV-2 infection and promote antiviral immunity.

Coronavirus Archive

Research Highlights

the best of science obtained using CIISB Core Facilities

Science Advances 2021

Nature Index Journal

Structural changes in iflavirus particles that enable genome release of SBV, SBPV, and DWV. Native virions (A, F, and K), genome-containing particles at acidic pH (B, G, and L), open particles containing genomes (C, H, and M), open particles without genomes (D, I, and N), and empty capsids resulting from genome release (E, J, and O). Individual panels show cryo-EM reconstructions of particles rainbow colored on the basis of the distance of the particle surface from its center. (C), (H), and (N) show projection images of representative particles, since 3D reconstructions could not be calculated because of structural heterogeneity of the particles. Scale bar, 10 nm.

Pavel Plevka Research Group


The family Iflaviridae includes economically important viruses of the western honeybee such as deformed wing virus, slow bee paralysis virus, and sacbrood virus. Iflaviruses have nonenveloped virions and capsids organized with icosahedral symmetry. The genome release of iflaviruses can be induced in vitro by exposure to acidic pH, implying that they enter cells by endocytosis. Genome release intermediates of iflaviruses have not been structurally characterized. Here, P. Plevka show that conformational changes and expansion of iflavirus RNA genomes, which are induced by acidic pH, trigger the opening of iflavirus particles. Capsids of slow bee paralysis virus and sacbrood virus crack into pieces. In contrast, capsids of deformed wing virus are more flexible and open like flowers to re- lease their genomes. The large openings in iflavirus particles enable the fast exit of genomes from capsids, which decreases the probability of genome degradation by the RNases present in endosomes.

Škubník, K., Sukeník, L. Buchta, D., Füzik, T., Procházková, M., Moravcová, J., Šmerdová, L., Přidal, A.,Vácha, R., and Plevka, P.: Capsid opening enables genome release of iflaviruses, Sci. Adv. 2021, 7, eabd7130, DOI: 10.1126/sciadv.abd7130

Nature Communications 2020

Nature Index Journal

Three states of HelD color-coded according to the domain structure

Libor Krásný and Jan Dohnálek Research Groups


RNA synthesis is central to life, and RNA polymerase (RNAP) depends on accessory factors for recovery from stalled states and adaptation to environmental changes. Here, T. Kouba, J. Dohnálek, L. Krásný the mechanism by which a helicase-like factor HelD recycles RNAP. They report a cryo-EM structure of a complex between the Mycobacterium smegmatis RNAP and HelD. The crescent-shaped HelD simultaneously penetrates deep into two RNAP channels that are responsible for nucleic acids binding and substrate delivery to the active site, thereby locking RNAP in an inactive state. They show that HelD prevents non-specific interactions between RNAP and DNA and dissociates stalled transcription elongation complexes. The liberated RNAP can either stay dormant, sequestered by HelD, or upon HelD release, restart transcription. Their results provide insights into the architecture and regulation of the highly medically-relevant mycobacterial transcription machinery and define HelD as a clearing factor that releases RNAP from nonfunctional complexes with nucleic acids.

Kouba, T., Koval’, T., Sudzinová, P., Pospíšil, J., Brezovská, B., Hnilicová, J., Šanderová, H., Janoušková, M., Šiková, M., Halada, P., Sýkora, M., Barvík, I., Nováček, J., Trundová, M.,  Dušková, J., Skálová, T., URee Chon, U.R., Murakami, K.S., Dohnálek, J., and Krásný, L.:  Mycobacterial HelD is a nucleic acids-clearing factor for RNA polymerase, Nature Comm. (2020) 11, 6419,

More publications Research Highlights archive

Reader’s Corner

literature to read, science to follow

In this section, a distinct selection of six highly stimulating research publications and reviews published during past 6 months is presented. It is our hope that links to exciting science, which deserves attention of the structural biology community, will help you to locate gems in the steadily expanding jungle of scientific literature. You are welcome to point out to any paper you found interesting by sending a link or citation to The section is being updated regularly.


12 Jan

Small-molecule inhibitors of human mitochondrial DNA transcription (Nature)

Altered expression of mitochondrial DNA (mtDNA) occurs in ageing and a range of human pathologies (for example, inborn errors of metabolism, neurodegeneration and cancer). Here Claes M. Gustafsson, Nils-Göran Larsson et. al. describe first-in-class specific inhibitors of mitochondrial transcription (IMTs) that target the human mitochondrial RNA polymerase (POLRMT), which is essential for biogenesis of the oxidative phosphorylation (OXPHOS) system. The IMTs efficiently impair mtDNA transcription in a reconstituted recombinant system and cause a dose-dependent inhibition of mtDNA expression and OXPHOS in cell lines. To verify the cellular target, they performed exome sequencing of mutagenized cells and identified a cluster of amino acid substitutions in POLRMT that cause resistance to IMTs. They obtained a cryo-electron microscopy (cryo-EM) structure of POLRMT bound to an IMT, which further defined the allosteric binding site near the active centre cleft of POLRMT. The growth of cancer cells and the persistence of therapy-resistant cancer stem cells has previously been reported to depend on OXPHOS7-17, and they therefore investigated whether IMTs have anti-tumour effects. Four weeks of oral treatment with an IMT is well-tolerated in mice and does not cause OXPHOS dysfunction or toxicity in normal tissues, despite inducing a strong anti-tumour response in xenografts of human cancer cells. In summary, IMTs provide a potent and specific chemical biology tool to study the role of mtDNA expression in physiology and disease.

18 Dec 2020

Nearest-neighbor NMR spectroscopy: categorizing spectral peaks by their adjacent nuclei (Nature Communications)

Methyl-NMR enables atomic-resolution studies of structure and dynamics of large proteins in solution. However, resonance assignment remains challenging. The problem is to combine existing structural informational with sparse distance restraints and search for the most compatible assignment among the permutations. Prior classification of peaks as either from isoleucine, leucine, or valine reduces the search space by many orders of magnitude. However, this is hindered by overlapped leucine and valine frequencies. In contrast, the nearest-neighbor nuclei, coupled to the methyl carbons, resonate in distinct frequency bands. Here, Coote, P.,  Arthanari, H. et. al. develop a framework to imprint additional information about passively coupled resonances onto the observed peaks. This depends on simultaneously orchestrating closely spaced bands of resonances along different magnetization trajectories, using principles from control theory. For methyl-NMR, the method is implemented as a modification to the standard fingerprint spectrum (the 2D-HMQC). The amino acid type is immediately apparent in the fingerprint spectrum. There is no additional relaxation loss or an increase in experimental time. The method is validated on biologically relevant proteins. The idea of generating new spectral information using passive, adjacent resonances is applicable to other contexts in NMR spectroscopy. The structure and dynamics of large proteins and complexes can be studied by methyl-NMR but resonance assignment is still challenging. Here, the authors present a NMR method that leverages optimal control pulse design to unambiguously distinguish between Leu and Val using a simple 2D HMQC experiment and they apply it to several proteins including Cas9, interleukin, and human translation initiation factor eIF4a.

18 Dec 2020

Small-molecule-induced polymerization triggers degradation of BCL6 (Nature)

Effective and sustained inhibition of non-enzymatic oncogenic driver proteins is a major pharmacological challenge. The clinical success of thalidomide analogues demonstrates the therapeutic efficacy of drug-induced degradation of transcription factors and other cancer targets(1-3), but a substantial subset of proteins are resistant to targeted degradation using existing approaches(4,5). B. Elber, S. Fischer report an alternative mechanism of targeted protein degradation, in which a small molecule induces the highly specific, reversible polymerization of a target protein, followed by its sequestration into cellular foci and subsequent degradation. BI-3802 is a small molecule that binds to the Broad-complex, Tramtrack and Bric-a-brac (BTB) domain of the oncogenic transcription factor B cell lymphoma 6 (BCL6) and leads to the proteasomal degradation of BCL6(6). They use cryo-electron microscopy to reveal how the solvent-exposed moiety of a BCL6-binding molecule contributes to a composite ligand-protein surface that engages BCL6 homodimers to form a supramolecular structure. Drug-induced formation of BCL6 filaments facilitates ubiquitination by the SIAH1 E3 ubiquitin ligase. Our findings demonstrate that a small molecule such as BI-3802 can induce polymerization coupled to highly specific protein degradation, which in the case of BCL6 leads to increased pharmacological activity compared to the effects induced by other BCL6 inhibitors. These findings open new avenues for the development of therapeutic agents and synthetic biology.

Reader’s Corner Archive

Quote of January

“Imagination is more important than knowledge.”

Albert Einstein

You are running an old browser version. We recommend updating your browser to its latest version.