Previous 1 12 13 14 15 16 56 Next

Highlights of Coronavirus Structural Studies

12 Jul 2021

The Contribution of Biophysics and Structural Biology to Current Advances in COVID-19 (Annual reviews of Biophysics)

Critical to viral infection are the multiple interactions between viral proteins and host-cell counterparts. The first such interaction is the recognition of viral envelope proteins by surface receptors that normally fulfil other physiological roles, a hijacking mechanism perfected over the course of evolution. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent of coronavirus disease 2019 (COVID-19), has successfully adopted this strategy using its spike glycoprotein to dock on the membrane-bound metalloprotease angiotensin-converting enzyme 2 (ACE2). The crystal structures of several SARS-CoV-2 proteins alone or in complex with their receptors or other ligands were recently solved at an unprecedented pace. This accomplishment is partly due to the increasing availability of data on other coronaviruses and ACE2 over the past 18 years. Likewise, other key intervening actors and mechanisms of viral infection were elucidated with the aid of biophysical approaches. An understanding of the various structurally important motifs of the interacting partners provides key mechanistic information for the development of structure-based designer drugs able to inhibit various steps of the infective cycle, including neutralizing antibodies, small organic drugs, and vaccines. This review analyzes current progress and the outlook for future structural studies.

Previous 1 12 13 14 15 16 35 Next

Reader's Corner Archive

2 Nov 2020

Sensitivity enhancement of homonuclear multidimensional NMR correlations for labile sites in proteins, polysaccharides, and nucleic acids (Nat. Commun.)

Multidimensional TOCSY and NOESY are central experiments in chemical and biophysical NMR. Limited efficiencies are an intrinsic downside of these methods, particularly when targeting labile sites. This study reported by L. Frydman et. al. demonstrates that the decoherence imparted on these protons through solvent exchanges can, when suitably manipulated, lead to dramatic sensitivity gains per unit time in the acquisition of these experiments. To achieve this, a priori selected frequencies are encoded according to Hadamard recipes, while concurrently subject to looped selective inversion or selective saturation procedures. Suitable processing then leads to protein, oligosaccharide and nucleic acid cross-peak enhancements of ≈200–1000% per scan, in measurements that are ≈10-fold faster than conventional counterparts. The extent of these gains will depend on the solvent exchange and relaxation rates of the targeted sites; these gains also benefit considerably from the spectral resolution provided by ultrahigh fields, as corroborated by NMR experiments at 600 MHz and 1 GHz. The mechanisms underlying these experiments’ enhanced efficiencies are analyzed on the basis of three-way polarization transfer interplays between the water, labile and non-labile protons, and the experimental results are rationalized using both analytical and numerical derivations. Limitations as well as further extensions of the proposed methods, are also discussed.

27 Oct 2020

Retrieving functional pathways of biomolecules from single-particle snapshots (Nat. Commun.)

A primary reason for the intense interest in structural biology is the fact that knowledge of structure can elucidate macromolecular functions in living organisms. Sustained effort has resulted in an impressive arsenal of tools for determining the static structures. But under physiological conditions, macromolecules undergo continuous conformational changes, a subset of which are functionally important. Techniques for capturing the continuous conformational changes underlying function are essential for further progress. Here, des Georges, Singharoy, Frank, and Ourmazd et. al. present chemically-detailed conformational movies of biological function, extracted data-analytically from experimental single-particle cryo-electron microscopy (cryo-EM) snapshots of ryanodine receptor type 1 (RyR1), a calcium-activated calcium channel engaged in the binding of ligands. The functional motions differ substantially from those inferred from static structures in the nature of conformationally active structural domains, the sequence and extent of conformational motions, and the way allosteric signals are transduced within and between domains. Their approach highlights the importance of combining experiment, advanced data analysis, and molecular simulations. There is a great interest in retrieving functional pathways from cryo-EM single-particle data. Here, the authors present an approach that combines cryo-EM with advanced data-analytical methods and molecular dynamics simulations to reveal the functional pathways traversed on experimentally derived energy landscapes using the ryanodine receptor type 1 as an example.

9 Oct 2020

Synthetic group A streptogramin antibiotics that overcome Vat resistance (Nature)

Natural products serve as chemical blueprints for most antibiotics in clinical use. The evolutionary process by which these molecules arise is inherently accompanied by the co-evolution of resistance mechanisms that shorten the clinical lifetime of any given class of antibiotics. Virginiamycin acetyltransferase (Vat) enzymes are resistance proteins that provide protection against streptogramins, potent antibiotics against Gram-positive bacteria that inhibit the bacterial ribosome. Owing to the challenge of selectively modifying the chemically complex, 23-membered macrocyclic scaffold of group A streptogramins, analogues that overcome the resistance conferred by Vat enzymes have not been previously developed. Here we report the design, synthesis, and antibacterial evaluation of group A streptogramin antibiotics with extensive structural variability. Using cryo-electron microscopy and forcefield-based refinement, I.B.Seiple et al. characterize the binding of eight analogues to the bacterial ribosome at high resolution, revealing binding interactions that extend into the peptidyl tRNA-binding site and towards synergistic binders that occupy the nascent peptide exit tunnel. One of these analogues has excellent activity against several streptogramin-resistant strains of Staphylococcus aureus, exhibits decreased rates of acetylation in vitro, and is effective at lowering bacterial load in a mouse model of infection. Their results demonstrate that the combination of rational design and modular chemical synthesis can revitalize classes of antibiotics that are limited by naturally arising resistance mechanisms.

8 Sep 2020

Conformational Ensembles of an Intrinsically Disordered Protein Consistent with NMR, SAXS, and Single-Molecule FRET (J.Amer.Chem.Soc.)

Intrinsically disordered proteins (IDPs) have fluctuating heterogeneous conformations, which makes their structural characterization challenging. Although challenging, characterization of the conformational ensembles of IDPs is of great interest, since their conformational ensembles are the link between their sequences and functions. An accurate description of IDP conformational ensembles depends crucially on the amount and quality of the experimental data, how it is integrated, and if it supports a consistent structural picture. G-N.W. Gomes and C. Gradinaru used integrative modeling and validation to apply conformational restraints and assess agreement with the most common structural techniques for IDPs: Nuclear Magnetic Resonance (NMR) spectroscopy, Small-angle X-ray Scattering (SAXS), and single-molecule Förster Resonance Energy Transfer (smFRET). Agreement with such a diverse set of experimental data suggests that details of the generated ensembles can now be examined with a high degree of confidence. Using the disordered N-terminal region of the Sic1 protein as a test case, they examined relationships between average global polymeric descriptions and higher-moments of their distributions. To resolve apparent discrepancies between smFRET and SAXS inferences, they integrated SAXS data with NMR data and reserved the smFRET data for independent validation. Consistency with smFRET, which was not guaranteed a priori, indicates that, globally, the perturbative effects of NMR or smFRET labels on the Sic1 ensemble are minimal. Analysis of the ensembles revealed distinguishing features of Sic1, such as overall compactness and large end-to-end distance fluctuations, which are consistent with biophysical models of Sic1’s ultrasensitive binding to its partner Cdc4. Their results underscore the importance of integrative modeling and validation in generating and drawing conclusions from IDP conformational ensembles.

Previous 1 12 13 14 15 16 22 Next

You are running an old browser version. We recommend updating your browser to its latest version.