Previous 1 11 12 13 14 15 42 Next

Highlights of Coronavirus Structural Studies

Previous 1 11 12 13 14 15 27 Next

Reader's Corner Archive

29 May 2020

The architecture of the Gram-positive bacterial cell wall

The primary structural component of the bacterial cell wall is peptidoglycan, which is essential for viability and the synthesis of which is the target for crucial antibiotics. Peptidoglycan is a single macromolecule made of glycan chains crosslinked by peptide side branches that surrounds the cell, acting as a constraint to internal turgor. In Gram-positive bacteria, peptidoglycan is tens of nanometers thick, generally portrayed as a homogeneous structure that provides mechanical strength.  S. J. Foster &  J. K. Hobbs applied atomic force microscopy to interrogate the morphologically distinct Staphylococcus aureus and Bacillus subtilis species, using live cells and purified peptidoglycan. The paper published in Nature shows that the mature surface of live cells is characterized by a landscape of large (up to 60 nm in diameter), deep (up to 23 nm) pores constituting a disordered gel of peptidoglycan. The inner peptidoglycan surface, consisting of more nascent material, is much denser, with glycan strand spacing typically less than 7 nm. The inner surface architecture is location dependent; the cylinder of B. subtilis has dense circumferential orientation, while in S. aureus and division septa for both species, peptidoglycan is dense but randomly oriented. Revealing the molecular architecture of the cell envelope frames our understanding of its mechanical properties and role as the environmental interface, providing information complementary to traditional structural biology approaches.

Previous 1 11 12 13 14 15 16 17 Next

You are running an old browser version. We recommend updating your browser to its latest version.