News

Previous 1 2 3 4 5 6 7 69 Next


Highlights of Coronavirus Structural Studies

9 Sep 2022

Omicron SARS-CoV-2 mutations stabilize spike up-RBD conformation and lead to a non-RBM-binding monoclonal antibody escape (Nature Communications)

Omicron SARS-CoV-2 is rapidly spreading worldwide. To delineate the impact of emerging mutations on spike's properties, we performed systematic structural analyses on apo Omicron spike and its complexes with human ACE2 or S309 neutralizing antibody (NAb) by cryo-EM. The Omicron spike preferentially adopts the one-RBD-up conformation both before and after ACE2 binding, which is in sharp contrast to the orchestrated conformational changes to create more up-RBDs upon ACE2 binding as observed in the prototype and other four variants of concern (VOCs). Furthermore, we found that S371L, S373P and S375F substitutions enhance the stability of the one-RBD-up conformation to prevent exposing more up-RBDs triggered by ACE2 binding. The increased stability of the one-RBD-up conformation restricts the accessibility of S304 NAb, which targets a cryptic epitope in the closed conformation, thus facilitating the immune evasion by Omicron. These results expand our understanding of Omicron spike's conformation, receptor binding and antibody evasion mechanism.

The SARS-CoV-2 Omicron variant spreads rapidly. Here the authors show that Omicron S preferentially adopts the one-RBD-up conformation, which leads to a non-RBM-binding monoclonal antibody escape. Mutagenesis reveals that S371L, S373P and S375F substitutions enhance the conformational stability.

Previous 1 2 3 4 5 6 7 35 Next

Reader's Corner Archive

29 Aug 2023

TDP-43 forms amyloid filaments with a distinct fold in type A FTLD-TDP (Nature)

The abnormal assembly of TAR DNA-binding protein 43 (TDP-43) in neuronal and glial cells characterizes nearly all cases of amyotrophic lateral sclerosis (ALS) and around half of cases of frontotemporal lobar degeneration (FTLD). A causal role for TDP-43 assembly in neurodegeneration is evidenced by dominantly inherited missense mutations in TARDBP, the gene encoding TDP-43, that promote assembly and give rise to ALS and FTLD. At least four types (A–D) of FTLD with TDP-43 pathology (FTLD-TDP) are defined by distinct brain distributions of assembled TDP-43 and are associated with different clinical presentations of frontotemporal dementia. We previously showed, using cryo-electron microscopy, that TDP-43 assembles into amyloid filaments in ALS and type B FTLD-TDP. However, the structures of assembled TDP-43 in FTLD without ALS remained unknown. Here we report the cryo-electron microscopy structures of assembled TDP-43 from the brains of three individuals with the most common type of FTLD-TDP, type A. TDP-43 formed amyloid filaments with a new fold that was the same across individuals, indicating that this fold may characterize type A FTLD-TDP. The fold resembles a chevron badge and is unlike the double-spiral-shaped fold of ALS and type B FTLD-TDP, establishing that distinct filament folds of TDP-43 characterize different neurodegenerative conditions. The structures, in combination with mass spectrometry, led to the identification of two new post-translational modifications of assembled TDP-43, citrullination and monomethylation of R293, and indicate that they may facilitate filament formation and observed structural variation in individual filaments. The structures of TDP-43 filaments from type A FTLD-TDP will guide mechanistic studies of TDP-43 assembly, as well as the development of diagnostic and therapeutic compounds for TDP-43 proteinopathies.

18 Aug 2023

Structural basis for specific RNA recognition by the alternative splicing factor RBM5 (Nature Communications)

The RNA-binding motif protein RBM5 belongs to a family of multi-domain RNA binding proteins that regulate alternative splicing of genes important for apoptosis and cell proliferation and have been implicated in cancer. RBM5 harbors structural modules for RNA recognition, such as RRM domains and a Zn finger, and protein-protein interactions such as an OCRE domain. Here, we characterize binding of the RBM5 RRM1-ZnF1-RRM2 domains to cis-regulatory RNA elements. A structure of the RRM1-ZnF1 region in complex with RNA shows how the tandem domains cooperate to sandwich target RNA and specifically recognize a GG dinucleotide in a non-canonical fashion. While the RRM1-ZnF1 domains act as a single structural module, RRM2 is connected by a flexible linker and tumbles independently. However, all three domains participate in RNA binding and adopt a closed architecture upon RNA binding. Our data highlight how cooperativity and conformational modularity of multiple RNA binding domains enable the recognition of distinct RNA motifs, thereby contributing to the regulation of alternative splicing. Remarkably, we observe surprising differences in coupling of the RNA binding domains between the closely related homologs RBM5 and RBM10. The RNA binding protein RBM5 regulates alternative splicing of genes implicated in cancer. Here the authors show structural mechanisms how multiple RNA binding domains of RBM5 cooperate to recognize specific target RNA sequences.

8 Aug 2023

Orchestrating nucleic acid-protein interactions at chromosome ends: telomerase mechanisms come into focus (Nature Structural & Molecular Biology)

Telomerase is a special reverse transcriptase ribonucleoprotein dedicated to the synthesis of telomere repeats that protect chromosome ends. Among reverse transcriptases, telomerase is unique in using a stably associated RNA with an embedded template to synthesize a specified sequence. Moreover, it is capable of iteratively copying the same template region (repeat addition processivity) through multiple rounds of RNA–DNA unpairing and reannealing, that is, the translocation reaction. Biochemical analyses of telomerase over the past 3 decades in protozoa, fungi and mammals have identified structural elements that underpin telomerase mechanisms and have led to models that account for the special attributes of telomerase. Notably, these findings and models can now be interpreted and adjudicated through recent cryo-EM structures of Tetrahymena and human telomerase holoenzyme complexes in association with substrates and regulatory proteins. Collectively, these structures reveal the intricate protein–nucleic acid interactions that potentiate telomerase’s unique translocation reaction and clarify how this enzyme reconfigures the basic reverse transcriptase scaffold to craft a polymerase dedicated to the synthesis of telomere DNA. Among the many new insights is the resolution of the telomerase ‘anchor site’ proposed more than 3 decades ago. The structures also highlight the nearly universal conservation of a protein–protein interface between an oligonucleotide/oligosaccharide-binding (OB)-fold regulatory protein and the telomerase catalytic subunit, which enables spatial and temporal regulation of telomerase function in vivo. In this Review, we discuss key features of the structures in combination with relevant functional analyses. We also examine conserved and divergent aspects of telomerase mechanisms as gleaned from studies in different model organisms.

Previous 1 2 3 4 5 6 7 31 Next

You are running an old browser version. We recommend updating your browser to its latest version.