News

Previous 1 2 3 4 5 6 7 69 Next


Highlights of Coronavirus Structural Studies

Previous 1 2 3 4 5 6 7 35 Next

Reader's Corner Archive

2 Jan

CLEM-Reg: An automated point cloud based registration algorithm for correlative light and volume electron microscopy

Correlative light and volume electron microscopy (vCLEM) is a powerful imaging technique that enables the visualisation of fluorescently labelled proteins within their ultrastructural context on a subcellular level. Currently, expert microscopists align vCLEM acquisitions using time-consuming and subjective manual methods. This paper presents CLEM-Reg, an algorithm that automates the 3D alignment of vCLEM datasets by leveraging probabilistic point cloud registration techniques. These point clouds are derived from segmentations of common structures in each modality, created by state-of-the-art open-source methods, with the option to leverage alternative tools from other plugins or platforms. CLEM-Reg drastically reduces the time required to register vCLEM datasets to a few minutes and achieves correlation of fluorescent signal to sub-micron target structures in EM on three newly acquired vCLEM benchmark datasets (fluorescence microscopy combined with FIB-SEM or SBF-SEM). CLEM-Reg was then used to automatically obtain vCLEM overlays to unambiguously identify TGN46-positive transport carriers involved in the trafficking of proteins between the trans-Golgi network and plasma membrane. The datasets are available in the EMPIAR and BioStudies public image archives for reuse in testing and developing multimodal registration algorithms by the wider community. A napari plugin integrating the algorithm is also provided to aid end-user adoption. DOI: 10.1101/2023.05.11.540445

26 Nov 2024

Large-Scale Quantitative Cross-Linking and Mass Spectrometry Provides New Insight on Protein Conformational Plasticity within Organelles, Cells, and Tissues (Biorxiv)

Many proteins can exist in multiple conformational states in vivo to achieve distinct functional roles. These states include alternative conformations, variable PTMs, and association with interacting protein, nucleotide, and ligand partners. Quantitative chemical cross-linking of live cells, organelles, or tissues together with mass spectrometry provides the relative abundance of cross-link levels formed in two or more compared samples, which depends both on the relative levels of existent protein conformational states in the compared samples as well as the relative likelihood of the cross-link originating from each. Because cross-link conformational state preferences can vary widely, one expects intra-protein cross-link levels from proteins with high conformational plasticity to display divergent quantitation among samples with differing conformational ensembles. Here we use the large volume of quantitative cross-linking data available on the public XLinkDB database to cluster intra-protein cross-links according to their quantitation in many diverse compared samples to provide the first widescale glimpse of cross-links grouped according to the protein conformational state(s) from which they predominantly originate. We further demonstrate how cluster cross-links can be aligned with any protein structure to assess the likelihood that they were derived from it.​

7 Dec 2023

Celebrating 30 years of Structure

Journal Structure was launched in 1993 as the first journal exclusively dedicated to structural biology by our founding academic chief editors, Wayne A. Hendrickson and Carl-Ivar Br€ande´ n, who were later joined by Alan Fersht. Christopher Lima and Andrej Sali became academic chief editors of Structure in 2003, and they were at the helm of the journal for 18 years until stepping down in the autumn 2021.

Structure is now celebrating its 30th birthday with this special anniversary issue. Editors commissioned reviews to highlight recent developments in different areas of structural biology. Sabine Botha and Petra Fromme provide an overview of the current state of serial femtosecond crystallography (SFX) research, the impact COVID-19 had on the SFX community, and how scientists adapted to these challenges. Koji Yonekura and his co-workers describe their contributions toward the development of electron 3D crystallography/microcrystal electron diffraction (MicroED) and highlight applications and current limitations of this method. Vaibhav KumarShukla, Gabriella Heller, and Flemming Hansen discuss the impact of artificial intelligence (AI) on biomolecular nuclear magnetic resonance (NMR) spectroscopy. Tuo Wang and his colleagues report how solid-state NMR is used to study the structures of fungaland plant cell walls. Syma Khalid and her co-workers define the term ‘‘computational microbiology’’ and describe state-of-the-art molecular dynamics imulations of bacterial systems.

Previous 1 2 3 4 5 6 7 32 Next

You are running an old browser version. We recommend updating your browser to its latest version.