News

Previous 1 17 18 19 20 21 69 Next


Highlights of Coronavirus Structural Studies

19 Feb 2021

Proton-Coupled Conformational Activation of SARS Coronavirus Main Proteases and Opportunity for Designing Small-Molecule Broad-Spectrum Targeted Covalent Inhibitors (JACS)

The SARS coronavirus 2 (SARS-CoV-2) main protease (Mpro) is an attractive broad-spectrum antiviral drug target. Despite the enormous progress in structureelucidation, the Mpro's structure-function relationship remains poorly understood. Recently, a peptidomimetic inhibitor has entered clinical trial; however, small-molecule orally available antiviral drugs have yet to be developed. Intrigued by a long-standing controversy regarding the existence of an inactive state, J. Shen et al. explored the proton-coupled dynamics of the Mpros of SARS-CoV-2 and the closely related SARS-CoV using a newly developed continuous constant pH molecular dynamics (MD) method and microsecond fixed-charge all-atom MD simulations. Their data supports a general base mechanism for Mpro's proteolytic function. The simulations revealed that protonation of His172 alters a conserved interaction network that upholds the oxyanion loop, leading to a partial collapse of the conserved S1 pocket, consistent with the first and controversial crystal structure of SARS-CoV Mpro determined at pH 6. Interestingly, a natural flavonoid binds SARS-CoV-2 Mpro in the close proximity to a conserved cysteine (Cys44), which is hyper-reactive according to the CpHMD titration. This finding offers an exciting new opportunity for small-molecule targeted covalent inhibitor design. Theirwork represents a first step toward the mechanistic understanding of the proton-coupled structure-dynamics-function relationship of CoV Mpros; the proposed strategy of designing small-molecule covalent inhibitors may help accelerate the development of orally available broad-spectrum antiviral drugs to stop the current pandemic and prevent future

19 Feb 2021

The SARS-CoV-2 nucleocapsid phosphoprotein forms mutually exclusive condensates with RNA and the membrane-associated M protein (Nature Communications)

The multifunctional nucleocapsid (N) protein in SARS-CoV-2 binds the similar to 30kb viral RNA genome to aid its packaging into the 80-90nm membrane-enveloped virion. The N protein is composed of N-terminal RNA-binding and C-terminal dimerization domains that are flanked by three intrinsically disordered regions. Here D.W. Cleveland, K.D. Corbett et.al.  demonstrate that the N protein's central disordered domain drives phase separation with RNA, and that phosphorylation of an adjacent serine/arginine rich region modulates the physical properties of the resulting condensates. In cells, N forms condensates that recruit the stress granule protein G3BP1, highlighting a potential role for N in G3BP1 sequestration and stress granule inhibition. The SARS-CoV-2 membrane (M) protein independently induces N protein phase separation, and three-component mixtures of N+M+RNA form condensates with mutually exclusive compartments containing N+M or N+RNA, including annular structures in which the M protein coats the outside of an N+RNA condensate. These findings support a model in which phase separation of the SARS-CoV-2 N protein contributes both to suppression of the G3BP1-dependent host immune response and to packaging genomic RNA during virion assembly. The SARS-CoV-2 nucleocapsid (N) protein binds the viral RNA genome and contains two ordered domains flanked by three intrinsically-disordered regions. Here, the authors show that RNA binding induces liquid-liquid phase separation of N, which is driven by its central intrinsically-disordered region and is modulated by phosphorylation. The SARS-CoV-2 Membrane (M) protein also phase-separates with N, and three-component mixtures of N+M+RNA form mutually exclusive compartments containing N+M or N+RNA.

Previous 1 17 18 19 20 21 35 Next

Reader's Corner Archive

18 May 2021

Beam image-shift accelerated data acquisition for near-atomic resolution single-particle cryo-electron tomography (Nature Communications)

Tomographic reconstruction of cryopreserved specimens imaged in an electron microscope followed by extraction and averaging of sub-volumes has been successfully used to derive atomic models of macromolecules in their biological environment. Eliminating biochemical isolation steps required by other techniques, this method opens up the cell to in-situ structural studies. However, the need to compensate for errors in targeting introduced during mechanical navigation of the specimen significantly slows down tomographic data collection thus limiting its practical value. Here, Borgnia, M. J., Bartesaghi, A. et. al. introduce protocols for tilt-series acquisition and processing that accelerate data collection speed by up to an order of magnitude and improve map resolution compared to existing approaches. They achieve this by using beam-image shift to multiply the number of areas imaged at each stage position, by integrating geometrical constraints during imaging to achieve high precision targeting, and by performing per-tilt astigmatic CTF estimation and data-driven exposure weighting to improve final map resolution. They validated our beam image-shift electron cryo-tomography (BISECT) approach by determining the structure of a low molecular weight target (~300 kDa) at 3.6 Å resolution where density for individual side chains is clearly resolved.

4 May 2021

Mechanism of NanR gene repression and allosteric induction of bacterial sialic acid metabolism (Nature Communications)

Bacteria respond to environmental changes by inducing transcription of some genes and repressing others. Sialic acids, which coat human cell surfaces, are a nutrient source for pathogenic and commensal bacteria. The Escherichia coli GntR-type transcriptional repressor, NanR, regulates sialic acid metabolism, but the mechanism is unclear. Here, R. C. J. Dobson et. al. demonstrate that three NanR dimers bind a (GGTATA)(3)-repeat operator cooperatively and with high affinity. Single-particle cryo-electron microscopy structures reveal the DNA-binding domain is reorganized to engage DNA, while three dimers assemble in close proximity across the (GGTATA)(3)-repeat operator. Such an interaction allows cooperative protein-protein interactions between NanR dimers via their N-terminal extensions. The effector, N-acetylneuraminate, binds NanR and attenuates the NanR-DNA interaction. The crystal structure of NanR in complex with N-acetylneuraminate reveals a domain rearrangement upon N-acetylneuraminate binding to lock NanR in a conformation that weakens DNA binding. Our data provide a molecular basis for the regulation of bacterial sialic acid metabolism. The GntR superfamily is one of the largest families of transcription factors in prokaryotes. Here the authors combine biophysical analysis and structural biology to dissect the mechanism by which NanR - a GntR-family regulator - binds to its promoter to repress the transcription of genes necessary for sialic acid metabolism.

Previous 1 17 18 19 20 21 31 Next

You are running an old browser version. We recommend updating your browser to its latest version.