PNAS 2017
The virus structure of deformed wing virus of honeybees determined by cryo-electron microscopy. (A) Surface of the virus is rainbow-colored according to its distance from the particle center. (B) Cartoon representation of structure of the P-domain that decorates deformed wing virus surface is rainbow-colored from residue 260 in blue to 416 in red. The background shows image of the deformed wing virus particles from electron microscope.
Significance
Honey bee populations in Europe and North America have been decreasing since the 1950s. Deformed wing virus (DWV), which is undergoing a worldwide epidemic, causes the deaths of individual honey bees and collapse of whole colonies. Three-dimensional structures of DWV determined at different conditions shows that the virus surface is decorated with protruding globular extensions of capsid proteins. The protruding domains contain a putative catalytic site that is probably required for the entry of the virus into the host cell. In addition, parts of the DWV RNA genome interact with the inside of the virus capsid. Identifying the RNA binding and catalytic sites within the DWV virion offers prospects for the development of antiviral treatments.
Skubnik, K.; Novacek, J.; Füzik, T.; Pridal, A.; Paxton, R. J. & Plevka, P., Structure of deformed wing virus, a major honey bee pathogen, PNAS, 114, 3210-3215 (2017) DOI: 10.1073/pnas.1615695114