Angew. Chem. Int. Edit. 2018
Schematic of an intramolecular A) i-motif DNA structure and B) C.C+ base pair. C) Double-staining (PI/FAM) FCM analysis of transfected HeLa cells with the (FAM)-DAP construct (upper left corner). Percentages of viable DNA non-transfected cells, viable DNA-containing cells, non-transfected dead/compromised cells, and transfected dead/compromised cells with DNA are indicated in left-bottom, right-bottom, left-top, and right-top quadrants, respectively. Confocal microscope images of cells transfected with (FAM)-DAP (upper right corner). The green color indicates the localization of (FAM)-DAP. The blue color corresponds to a cell nucleus stained by Hoechst 33342. Imino region of 1D 1H NMR spectra of DAP in vitro in T-buffer (140 mm sodium phosphate, 5 mm KCl, 10 mm MgCl2, pH 7.0) (black) and in-cell (red). Imino region of 1D 1H NMR spectrum of extracellular fluid taken from the in-cell NMR samples after completion of the spectra acquisition (gray). The (in-cell) NMR spectra were acquired at 20oC.
Lukáš Trantírek Research Group
Significance
C-rich DNA has the capacity to form a tetra-stranded structure known as an i-motif. The i-motifs within genomic DNA have been proposed to contribute to the regulation of DNA transcription. However, direct experimental evidence for the existence of these structures in vivo has been missing. Whether i-motif structures form in complex environment of living cells is not currently known. Using state-of- the-art in-cell NMR spectroscopy, Lukáš Trantírek and his colleagues from CEITEC Masaryk University in Brno has evaluated the stabilities of i-motif structures in the complex cellular environment. They showed that i-motifs formed from naturally occurring C-rich sequences in the human genome are stable and persist in the nuclei of living human cells. The obtained data show that i-motif stabilities in vivo are generally distinct from those in vitro. Results are the first to interlink the stability of DNA i-motifs in vitro with their stability in vivo and provide essential information for the design and development of i-motif-based DNA biosensors for intracellular applications.
Dzatko, S.; Krafcikova, M.; Hänsel-Hertsch, R.; Fessl, T.; Fiala, R.; Loja, T.; Krafcik, D.; Mergny, J.-L.; Foldynova-Trantirkova, S. & Trantirek, L.: Evaluation of the Stability of DNA i-Motifs in the Nuclei of Living Mammalian Cells, Angew. Chem. Int. Edit. 2018, in press, DOI: 10.1002/anie.201712284