CIISB Research Highlights Archive

  • Nat. Commun. 2019

    Nat. Commun. 2019

    Summary showing CK1ε role in DVL3 conformational dynamics. A summarizing model which proposes at least three DVL conformations in vivo: (i) a closed (CK1ε present and inactive), (ii) open (CK1ε active), and (iii) non-physiological open, which occurs when CK1ε is absent or the DVL-CK1ε interaction is disrupted. Position of insertion of FlAsH III binding tag is indicated. The CK1-induced phosphorylation events are depicted as P in red circle and the C-terminus of DVL as red thick line. The molecular distance analysed in the FRET FlAsH sensor III is shown as a dashed red line; ECFP, enhanced cyan fluorescent protein

    Vítězslav Bryja Research Group

    Significance

    Dishevelled (DVL) is the key component of the Wnt signalling pathway. Currently, DVL conformational dynamics under native conditions is unknown. To overcome this limitation, we develop the Fluorescein Arsenical Hairpin Binder- (FlAsH-) based FRET in vivo approach to study DVL conformation in living cells. Using this single-cell FRET approach, we demonstrate that (i) Wnt ligands induce open DVL conformation, (ii) DVL variants that are predominantly open, show more even subcellular localization and more efficient membrane recruitment by Frizzled (FZD) and (iii) Casein kinase 1 ɛ (CK1ɛ) has a key regulatory function in DVL conformational dynamics. In silico modelling and in vitro biophysical methods explain how CK1ɛ-specific phosphorylation events control DVL conformations via modulation of the PDZ domain and its interaction with DVL C-terminus. In summary, our study describes an experimental tool for DVL conformational sampling in living cells and elucidates the essential regulatory role of CK1ɛ in DVL conformational dynamics. 

    Harnoš, J.; Cañizal, M. C. A.; Jurásek, M.; Kumar, J.; Holler, C.; Schambony, A.; Hanáková, K.; Bernatík, O.; Zdráhal, Z.; Gömöryová, K.; Gybel’, T.; Radaszkiewicz, T. W.; Kravec, M.; Trantírek, L.; Ryneš, J.; Dave, Z.; Fernández-Llamazares, A. I.; Vácha, R.; Tripsianes, K.; Hoffmann, C. & Bryja, V.: Dishevelled-3 conformation dynamics analyzed by FRET-based biosensors reveals a key role of casein kinase 1, Nat. Commun. (2019) 10, 1804, 1-18.  doi.org/10.1038/s41467-019-09651-7

  • Nat. Commun. 2019

    Nat. Commun. 2019

    Scheme of enterovirus genome release. Binding to receptors or exposure to acidic pH in endosomes induces conformational transition of virions to activated particles. The structural changes within the capsid and virus RNA enable the expulsion of pentamers from the capsid, resulting in the formation of open particles. The RNA genomes are released from the open particles. After the genome release, the pentamers may re-associate with the open capsids. Scale bar represents 10 nm

    Pavel Plevka Research Group

    Significance

    Viruses from the genus Enterovirusare important human pathogens. Receptor binding or exposure to acidic pH in endosomes converts enterovirus particles to an activated state that is required for genome release. However, the mechanism of enterovirus uncoating is not well understood. Here, we use cryo-electron microscopy to visualize virions of human echovirus 18 in the process of genome release. We discover that the exit of the RNA from the particle of echovirus 18 results in a loss of one, two, or three adjacent capsid-protein pentamers. The opening in the capsid, which is more than 120 Å in diameter, enables the release of the genome without the need to unwind its putative double-stranded RNA segments. We also detect capsids lacking pentamers during genome release from echovirus 30. Thus, our findings uncover a mechanism of enterovirus genome release that could become target for antiviral drugs.

    Buchta, D.; Füzik, T.; Hrebík, D.; Levdansky, Y.; Sukeník, L.; Mukhamedova, L.; Moravcová, J.; Vácha, R. & Plevka, P: Enterovirus particles expel capsid pentamers to enable genome release, Nature Commun. (2019)10, 1138, 1-9 doi.org/10.1038/s41467-019-09132-x

  • Plos Biology 2019

    Plos Biology 2019

    (A) Model of TvTom40-2 was built using the Ncrassa Tom40 structure (PDB ID 5o8o) as a template. The asterisk shows the extra loop between β-strands five and six, and the arrow shows the loop between β-strands four and five. (B) Comparison of 3D structures of Ncrassa Tom40 (5o8o), TvTom40-2, and Mus musculus VDAC (3emn). Mouse VDAC is almost uniformly positively charged inside the barrel to bind negatively charged small molecules (ATP), while TvTom40-2 and Ncrassa Tom40 share both positively and negatively charged patches inside the barrel. The scale of the electrostatic potential ranges from −5 to +5 kT/e.

    Jan Tachezy Research Group

    Significance

    Mitochondria carry out many vital functions in the eukaryotic cells, from energy metabolism to programmed cell death. These organelles descended from bacterial endosymbionts, and during their evolution, the cell established a mechanism to transport nuclear-encoded proteins into mitochondria. Embedded in the mitochondrial outer membrane is a molecular machine, known as the translocase of the outer membrane (TOM) complex, that plays a key role in protein import and biogenesis of the organelle. Here, we provide evidence that the TOM complex of hydrogenosomes, a metabolically specialised anaerobic form of mitochondria in Trichomonas vaginalis, is composed of highly divergent core subunits and lineage-specific peripheral subunits. Despite the evolutionary distance, the Tvaginalis TOM (TvTOM) complex has a conserved triplet-pore structure but with a unique skull-like shape suggesting that the TOM in the early mitochondrion could have formed three pores. Our results contribute to a better understanding of the evolution and adaptation of protein import machinery in anaerobic forms of mitochondria.

    Makki, A.; Rada, P.; Žárský, V.; Kereïche, S.; Kováčik, L.; Novotný, M.; Jores, T.; Rapaport, D. & Tachezy, J.: Triplet-pore structure of a highly divergent TOM complex of hydrogenosomes in Trichomonas vaginalis, Plos Biol. (2019)17, No. 1, doi.org/10.1371/journal.pbio.3000098

  • The Febs Journal 2018

    The Febs Journal 2018

    SAXS‐based structural modeling of the proC2:14‐3‐3ζ complex. (A) Best‐scoring AllosMod‐FoXS model of the proC2:14‐3‐3ζ complex shown in two perpendicular views. The N‐terminal linker, the p19 and the p12 domains and phosphorylation sites are indicated in brown, salmon, yellow, and red spheres, respectively. The protomers of 14‐3‐3ζ are shown in blue. 14‐3‐3 helices are identified with capital letters, whereas proC2 helices and β‐strands are identified with Greek letters. (B) Intermolecular cross‐links connecting the NLS region of proC2 (Lys153) to helices H1 and H3 of 14‐3‐3 (Lys11 and Lys68); and the proC2 domain p12 (Lys372, Lys381) to the 14‐3‐3ζ helix H3 (Lys68). Lysine residues of proC2 are shown in brown. (C) Cross‐links between the N terminus of proC2 (Ser123) and the 14‐3‐3ζ helix H4 and H5/H6 loop (Lys75, Lys138). Lysine residues of proC2 are shown in brown.

    Tomáš Obšil Research Group

    Significance

    The main goal of this work is to provide the structural basis for the role of 14‐3‐3 protein binding in regulating caspase‐2 activation. Because all our previous attempts to crystallize the complex between Ser139‐ and Ser164‐ phosphorylated caspase‐2 (residues 123–452 without the CARD domain, hereafter referred to as proC2) and 14‐3‐3ζ had been unsuccessful, we decided to use small angle X‐ray scattering (SAXS) combined with NMR, with chemical cross‐linking coupled to MS and with fluorescence spectroscopy to characterize the solution structure and conformational behavior of this complex.

    The structural analysis of the 14‐3‐3:caspase‐2 complex reported in this study suggested that 14‐3‐3 protein binding may inhibit caspase‐2 activation through interference with caspase‐2 oligomerization and/or its nuclear localization by sterically occluding caspase‐2 p12 domain as well as NLS, which is bordered by the two phosphorylated 14‐3‐3‐binding motifs of caspase‐2. Thus, these results corroborate the hypothesis that 14‐3‐3 binding is an important regulatory element of caspase‐2 activation. Further research should be directed to study the effect of 14‐3‐3 on the caspase‐2 dimerization and cellular localization in vivo.

    Smidova, A; Alblova, M.; Kalabova, D.; Psenakova, K.; Rosulek, M; Herman, P.; Obsil. T. & Obsilova, V.: 14-3-3 protein masks the nuclear localization sequence of caspase-2Febs Journal 285, 4196-4213, doi:10.1111/febs.14670 (2018).

  • Nat. Commun. 2018

    Nat. Commun. 2018

    RF3-induced subunit rotation destabilizes RF1 binding. a Cryo-EM map of SSU (light blue) and RF1 (orange) from state III compared with SSU (dark blue) and RF1 (red) from state IV. b Isolated cryo-EM electron densities (grey mesh) with molecular models for RF1 from state III (orange) and state IV (red) shown at the same contour level based on comparison with the SSU density. c Domain 2/4 of RF1 from state III (sIII:RF1, orange) is rotated by 6° and shifted by 4 Å compared to RF1 from state IV (sIV:RF1, red). d, e Contacts (arrowed) between RF1 (orange) and P/P-tRNA (green) are lost upon formation of the hybrid P/E-tRNA (light blue). Amino acids of RF1 that contact P/P-tRNA are shown as spheres. e Zoom of d showing the presence or absence of RF1 contacts with the ASL of P/P- or P/E-tRNA, respectively.

    Daniel N. Wilson Research Group

    Significance

    During translation termination in bacteria, the release factors RF1 and RF2 are recycled from the ribosome by RF3. While high-resolution structures of the individual termination factors on the ribosome exist, direct structural insight into how RF3 mediates dissociation of the decoding RFs has been lacking. Here we have used the Apidaecin 137 peptide to trap RF1 together with RF3 on the ribosome and visualize an ensemble of termination intermediates using cryo-electron microscopy. Binding of RF3 to the ribosome induces small subunit (SSU) rotation and swivelling of the head, yielding intermediate states with shifted P-site tRNAs and RF1 conformations. RF3 does not directly eject RF1 from the ribosome, but rather induces full rotation of the SSU that indirectly dislodges RF1 from its binding site. SSU rotation is coupled to the accommodation of the GTPase domain of RF3 on the large subunit (LSU), thereby promoting GTP hydrolysis and dissociation of RF3 from the ribosome.

    Graf, M.; Huter, P.; Maracci, C.; Peterek, M.; Rodnina, M. V. & Wilson D. N.: Visualization of translation termination intermediates trapped by the Apidaecin 137 peptide during RF3-mediated recycling of RF1 Nat. Commun. (2018)9, 3053 doi:10.1038/s41467-018-05465-1

  • PNAS 2018

    PNAS 2018

    Structure of the MiCP and its interaction with other capsid proteins. (A) Structure of the MiCP shown in stick representation with carbon atoms in magenta. The first and last structured residues of MiCP are labeled. The electron density map of the MiCP contoured at 2σ is shown as a blue mesh. Major capsid proteins are shown in cartoon representation with VP1 in blue, VP2 in green, and VP3 in red. (B and C) Comparison of capsid proteins VP2 of SBV (B) and poliovirus 1 (C). The MiCP of SBV, which is highlighted in magenta (B), occupies the volume of the puff loop in VP2 of poliovirus 1, highlighted in orange (C). (D and E) The VP3 subunit of SBV (D) lacks the knob loop present in poliovirus 1 (E), highlighted in green

    Pavel Plevka Research Group

    Significance

    Infection by sacbrood virus (SBV) from the family Iflaviridae is lethal to honey bee larvae but only rarely causes the collapse of honey bee colonies. Despite the negative effect of SBV on honey bees, the structure of its particles and mechanism of its genome delivery are unknown. Here we present the crystal structure of SBV virion and show that it contains 60 copies of a minor capsid protein (MiCP) attached to the virion surface. No similar MiCPs have been previously reported in any of the related viruses from the order Picornavirales. The location of the MiCP coding sequence within the SBV genome indicates that the MiCP evolved from a C-terminal extension of a major capsid protein by the introduction of a cleavage site for a virus protease. The exposure of SBV to acidic pH, which the virus likely encounters during cell entry, induces the formation of pores at threefold and fivefold axes of the capsid that are 7 Å and 12 Å in diameter, respectively. This is in contrast to vertebrate picornaviruses, in which the pores along twofold icosahedral symmetry axes are currently considered the most likely sites for genome release. SBV virions lack VP4 subunits that facilitate the genome delivery of many related dicistroviruses and picornaviruses. MiCP subunits induce liposome disruption in vitro, indicating that they are functional analogs of VP4 subunits and enable the virus genome to escape across the endosome membrane into the cell cytoplasm.

    Procházková, M. et al.: Virion structure and genome delivery mechanism of sacbrood honeybee virus. PNAS 2018, 115 (30) 7759-7764. doi.org/10.1073/pnas.1722018115.

Previous 1 11 12 13 14 15 16 17 Next

You are running an old browser version. We recommend updating your browser to its latest version.