News

Previous 1 2 3 4 5 6 7 69 Next


Highlights of Coronavirus Structural Studies

9 Sep 2022

A public antibody class recognizes an S2 epitope exposed on open conformations of SARS-CoV-2 spike (Nature Communications)

Delineating the origins and properties of antibodies elicited by SARS-CoV-2 infection and vaccination is critical for understanding their benefits and potential shortcomings. Therefore, we investigate the SARS-CoV-2 spike (S)-reactive B cell repertoire in unexposed individuals by flow cytometry and single-cell sequencing. We show that similar to 82% of SARS-CoV-2 S-reactive B cells harbor a naive phenotype, which represents an unusually high fraction of total human naive B cells (similar to 0.1%). Approximately 10% of these naive S-reactive B cells share an IGHV1-69/IGKV3-11 B cell receptor pairing, an enrichment of 18-fold compared to the complete naive repertoire. Following SARS-CoV-2 infection, we report an average 37-fold enrichment of IGHV1-69/IGKV3-11 B cell receptor pairing in the S-reactive memory B cells compared to the unselected memory repertoire. This class of B cells targets a previously undefined non-neutralizing epitope on the S2 subunit that becomes exposed on S proteins used in approved vaccines when they transition away from the native pre-fusion state because of instability. These findings can help guide the improvement of SARS-CoV-2 vaccines.

To fully understand the potential shortcomings of SARS-CoV-2 vaccination, it is necessary to delineate the properties of the antibodies elicited, during immunization, and also infection. Through investigation of the SARS-CoV-2 spike-reactive B cell repertoire, authors identify following infection, a subset of B cells enriched and almost exclusively target a non-neutralizing S2 epitope present in aberrant forms.

Previous 1 2 3 4 5 6 7 35 Next

Reader's Corner Archive

10 Oct 2023

Structure of LARP7 Protein p65–telomerase RNA Complex in Telomerase Revealed by Cryo-EM and NMR (Journal of Molecular Biology)

La-related protein 7 (LARP7) are a family of RNA chaperones that protect the 3′-end of RNA and are components of specific ribonucleoprotein complexes (RNP). In Tetrahymena thermophila telomerase, LARP7 protein p65 together with telomerase reverse transcriptase (TERT) and telomerase RNA (TER) form the core RNP. p65 has four known domains—N-terminal domain (NTD), La motif (LaM), RNA recognition motif 1 (RRM1), and C-terminal xRRM2. To date, only the xRRM2 and LaM and their interactions with TER have been structurally characterized. Conformational dynamics leading to low resolution in cryo-EM density maps have limited our understanding of how full-length p65 specifically recognizes and remodels TER for telomerase assembly. Here, we combined focused classification of Tetrahymena telomerase cryo-EM maps with NMR spectroscopy to determine the structure of p65–TER. Three previously unknown helices are identified, one in the otherwise intrinsically disordered NTD that binds the La module, one that extends RRM1, and another preceding xRRM2, that stabilize p65–TER interactions. The extended La module (αN, LaM and RRM1) interacts with the four 3′ terminal U nucleotides, while LaM and αN additionally interact with TER pseudoknot, and LaM with stem 1 and 5′ end. Our results reveal the extensive p65–TER interactions that promote TER 3′-end protection, TER folding, and core RNP assembly and stabilization. The structure of full-length p65 with TER also sheds light on the biological roles of genuine La and LARP7 proteins as RNA chaperones and core RNP components.

10 Oct 2023

After AlphaFold: protein-folding contest seeks next big breakthrough (Nature)

Two years after DeepMind’s revolutionary AI swept a competition for predicting protein structures, researchers are building on AlphaFold’s success. “In some sense, the problem is solved,” computational biologist John Moult declared in late 2020. The London-based company DeepMind had just swept a biennial contest co-founded by Moult that tests teams’ abilities to predict protein structures — one of biology’s grandest challenges — with its revolutionary artificial-intelligence (AI) tool AlphaFold. Two years later, Moult’s competition, the Critical Assessment of Structure Prediction (CASP), is still walking in AlphaFold’s long shadow. Results from this year’s edition (CASP15) — which were unveiled over the weekend at a conference in Antalya, Turkey — show that the most successful approaches to predicting protein structures from their amino-acid sequences incorporated AlphaFold, which relies on an AI approach called deep learning. “Everyone is using AlphaFold,” says Yang Zhang, a computational biologist at the University of Michigan in Ann Arbor. Yet AlphaFold’s progress has opened the floodgates for new challenges in protein-structure prediction — some included in this year’s CASP — that might require new approaches and more time to fully tackle. “The low-hanging fruit has been picked,” says Mohammed AlQuraishi, a computational biologist at Columbia University in New York City. “Some of the next problems are going to be harder.”

29 Aug 2023

Cryo-EM structure of coagulation factor V short (Blood)

Coagulation factor V (fV) is the precursor of activated fV (fVa), an essential component of the prothrombinase complex required for the rapid activation of prothrombin in the penultimate step of the coagulation cascade. In addition, fV regulates the tissue factor pathway inhibitor α (TFPIα) and protein C pathways that inhibit the coagulation response. A recent cryogenic electron microscopy (cryo-EM) structure of fV has revealed the architecture of its A1-A2-B-A3-C1-C2 assembly but left the mechanism that keeps fV in its inactive state unresolved because of an intrinsic disorder in the B domain. A splice variant of fV, fV short, carries a large deletion of the B domain that produces constitutive fVa-like activity and unmasks epitopes for the binding of TFPIα. The cryo-EM structure of fV short was solved at 3.2 Å resolution and revealed the arrangement of the entire A1-A2-B-A3-C1-C2 assembly. The shorter B domain stretches across the entire width of the protein, making contacts with the A1, A2, and A3 domains but suspended over the C1 and C2 domains. In the portion distal to the splice site, several hydrophobic clusters and acidic residues provide a potential binding site for the basic C-terminal end of TFPIα. In fV, these epitopes may bind intramolecularly to the basic region of the B domain. The cryo-EM structure reported in this study advances our understanding of the mechanism that keeps fV in its inactive state, provides new targets for mutagenesis and facilitates future structural analysis of fV short in complex with TFPIα, protein S, and fXa.

Previous 1 2 3 4 5 6 7 31 Next

You are running an old browser version. We recommend updating your browser to its latest version.