6 Apr 2022
Structural basis for activation and gating of IP3receptors (Nature Communications)
A pivotal component of the calcium (Ca2+) signaling toolbox in cells is the inositol 1,4,5-triphosphate (IP3) receptor (IP3R), which mediates Ca2+ release from the endoplasmic reticulum (ER), controlling cytoplasmic and organellar Ca2+ concentrations. IP3Rs are co-activated by IP3 and Ca2+, inhibited by Ca2+ at high concentrations, and potentiated by ATP. However, the underlying molecular mechanisms are unclear. Here Erkan Karakas et. al. report cryo-electron microscopy (cryo-EM) structures of human type-3 IP3R obtained from a single dataset in multiple gating conformations: IP3-ATP bound pre-active states with closed channels, IP3-ATP-Ca2+ bound active state with an open channel, and IP3-ATP-Ca2+ bound inactive state with a closed channel.The structures demonstrate how IP3-induced conformational changes prime the receptor for activation by Ca2+, how Ca2+ binding leads to channel opening, and how ATP modulates the activity, providing insights into the long-sought questions regarding the molecular mechanism underpinning receptor activation and gating.